DPP - 4 (EMI)

Video Solution on Website:- https://physicsaholics.com/home/courseDetails/79

Video Solution on YouTube:-

https://youtu.be/ggMttZ_Ai3c

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/61

Q 1. An e.m.f. of 5 volt is produced by a self inductance, when the current changes at a steady rate from 3 A to 2 A in 1 millisecond. The value of self inductance is
(a) Zero
(b) 5 H
(c) 5000 H
(d) 5 mH

Q 2. An average emf of 25 V is induced in an inductor when the current in it is changed from 2.5 A in one direction ot the same value in the opposite direction in 0.1s. Find the selfinductance of the inductor.
(a) 0.5 H
(b) 1 H
(c) 5 H
(d) 50 mH

Q 3. The current in ampere through an inductor is $\mathrm{I}=(10+20 \mathrm{t})$. Here t is in second. The induced emf in the inductor 4 V . The self inductance of the inductor is, $\mathrm{L}=\ldots . . \mathrm{H}$
(a) 2
(b) 20
(c) 0.2
(d) 0.02

Q 4. In an inductor of inductance $\mathrm{L}=100 \mathrm{mH}$, a current of $\mathrm{I}=10 \mathrm{~A}$ flowing. The energy stored in the inductor is
(a) 51
(b) 10 J
(c) 100 J
(d) 1000$)$

Q 5. The magnetic potential energy stored in a certain inductor is 25 mJ , when the current in the inductor is 60 mA . This inductor is of inductance
(a) 13.89 H
(b) 0.138 H
(c) 1.389 H
(d) 138.8 H

Q 6. In what form is the energy stored in an inductor of A coil of inductance L is carrying a steady current i. What is the nature of its stored energy
(a) Magnetic
(b) Electrical
(c) Both magnetic and electrical
(d) Heat

Q 7. A coil of self-inductance 50 henry is joined to the terminals of a battery of e.m.f. 2 volts through a resistance of 10 ohm and a steady current is flowing through the circuit. If the battery is now disconnected, the time in which the current will decay to $1 / \mathrm{e}$ of its steady value is
(a) 500 seconds
(b) 50 seconds
(c) 5 seconds
(d) 0.5 seconds

Q 8. AB is a part of circuit. Find the potential difference $V_{A}-V_{B}$ if current $\mathrm{I}=2 \mathrm{~A}$ and is constant

(a) 9 V
(b) 10 V
(c) 8 V
(d) zero

Q 9. AB is a part of circuit. Find the potential difference $V_{A}-V_{B}$ if
(a) current $\mathrm{I}=2 \mathrm{~A}$ and is increasing at the rate of $1 \mathrm{~A} / \mathrm{s}$
(b) current $\mathrm{I}=2 \mathrm{~A}$ and is decreasing at the rate of $1 \mathrm{~A} / \mathrm{s}$

(a) $8 \mathrm{~V}, 9 \mathrm{~V}$
(b) $8 \mathrm{~V}, 6 \mathrm{~V}$
(c) $9 \mathrm{~V}, 8 \mathrm{~V}$
(d) $10 \mathrm{~V}, 8 \mathrm{~V}$

Q 10. If $\mathrm{I}=5 \mathrm{~A}$ and decreasing at a rate of $10^{3} \mathrm{~A} / \mathrm{sec}$, then potential difference $V_{B}-V_{A}$ will be

(a) 5 V
(b) 10 V
(c) 15 V
(d) 20 V

Q 11. Consider a L-R circuit shown in figure. There is no current in circuit switch S is closed at $t=0$, time instant when current in inductor is equal to current in resistor $2 R$ will be:

(a) $\frac{L}{R} \ln 2$
(b) $\frac{2 L}{R} \ln 2$
(c) $\frac{L}{2 R} \ln 2$
(d) $\frac{L}{2 R}$

Q 12. In the circuit shown in figure switch S is closed at time $t=0$. The charge which passes through the battery in one time constant is

(a) $\frac{e R^{2} E}{L}$
(b) $E\left(\frac{L}{R}\right)$
(c) $\frac{E L}{e R^{2}}$
(d) $\frac{e L}{E R}$

Answer Key

Q. 1 d	Q. 2 a	Q. 3 c	Q. 4 a	Q. 5 a
Q. 6 a	Q. 7 c	Q. 8 a	Q. 9 d	Q. 10 c
Q. 11 a	Q. 12 c			

